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ABSTRACT

A mathematical model of random wind velocity is presented for use
in the synthesis of an analog computer network to simulate wind turbulence.
A synthesis technique, called the covariance-expansion method, is applied
to the mechanization of the model. The output of the analog computer net-
work simulates the effect of wind turbulence on a vehicle as it moves on
an arbitrary path in space. The inputs to the analog computer network are
(a) a Gaussian white-noise random process and (b) appropriate functions of

time characterizing the variable position of the moving vehicle.
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I. INTRODUCTION

This technical note summarizes the most important results of the
work on nonstationary random processes that has been carried out under
Georgia Tech Research Project No. A-588 for the Flight Simulation Branch,
Computation Division, of George C. Marshall Space Flight Center. A mathe-
matical model of random wind velocity is presented, and the previously de-
veloped "covariance-expansion" synthesis procedure is applied to the mechan-
ization of this mathematical model with an analog computer network. The
structure of the mathematical model has been selected to minimize the amount
of experimental wind data necessary to determine the parameters of the model
and to avoid excessive complexity of the analog computer network that is
used to mechanize the model.

The mathematical model characterizes the three components of the
vector wind velocity as Gaussian random processes that are dependent on
time and on spatial position. A procedure is shown for the synthesis of an
analog computer network having as outputs three variables that approximate
the components of the vector wind velocity at any specified time and posi-
tion in space. These outputs simulate the effect of random wind turbulence
on a rocket or other aerospace vehicle in flight. The analog computer net-
work has as inputs a Gaussian white-noise random process, a function of
time representing the instantaneous altitude of the moving vehicle, and a
function of time representing the scalar velocity of the vehicle. A single
analog computer network is used in the simulation. It is not necessary to
synthesize a different network for each different flight path.

The covariance-expansion synthesis method has been discussed in de-
tail in Project A-588 Technical Notes Nos. 3 and 11 (see Bibliography at
end of this report). Details of proof of validity for the method are there-
fore not included in the present summary. Only those steps are included
that are necessary for the implementation of the procedure.

Chapter V of this technical note discusses the mechanization of a
simple mathematical model of one horizontal component of wind velocity.

This mechanization permits the simulation of the wind disturbance that
affects a vehicle moving on an arbitrary path in three-dimensional space.
The parameters of this model have been determined by use of experimental

wind data. Wind profiles generated by the analog computer network are shown
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for comparison with actual wind profiles determined by radar observation of

an ascending Jimsphere balloon.




IT, A MATHEMATICAL MODEL FOR RANDOM WIND VELOCITY

In this chapter a mathematical model of random wind velocity 1s pre-
sented. Wind velocity is characterized as a vector-valued Gaussian random
process depending on time and spatial position. The structure of the mathe-
matical model has been selected to minimize the amount of experimental wind
data necessary to determine the parameters of the model and to avoid excess-
ive complexity of the analog computer network that is used to mechanize the

model.

2-1, Definition of Coordinate System

Wind velocity w, expressed in meters per second, will be character-
ized as a vector-valued random process having three components--wx, wy, and
W, . The magnitude of the wind velocity will be denoted as w. The random
process w is assumed to depend on time and on three coordinates describing
spatial position. Time t is expressed in seconds. Position is described by
a rectangular coordinate system, with the axes chosen in a somewhat unortho-
dox fashion for reasons of convenience which will be apparent later. The
positive y axis, indicating altitude, is directed vertically upward from the
surface of the earth. The x axis is chosen to be positive toward the east,
while the z axis is taken positive toward the north. The spatial coordinates
X, ¥, and z are expressed in kilometers.

In this technical note, two variations of a mathematical model for
characterizing vector wind velocity are presented. 1In the first of these
variations it is advantageous to describe the direction of the vector wind
velocity w by two angles, ® and ¥, As is shown in Figure 2.1, 8 1is the angle
between the positive x axis and a radius vector in the horizontal x-z plane.
This angle is measured in radians and is taken to be positive in the direc-
tion of rotation from the positive x axis to the positive z axis. The radius
vector is directed either in the same direction as the projection of w in the
horizontal x-z plane or in the direction opposite to this projection. As is
shown in Figure 2,1, Y is the angle between the horizontal radius vector just
defined and the vector wind velocity w. This angle 1is measured in radians
and is taken to be positive in the direction of rotation from the radius vec-

tor toward the positive y axis.



Figure 2.1. Coordinates Describing Position and Direction of Wind Velocity w.

The angle Y describes the vertical orientation of the vector w, while
the angle 6 is primarily related to the horizontal orientation of Ww. It
should be noted that the horizontal orientation of w is not uniquely deter-
mined unless both ¥ and ® are specified. For implementation of the mathema-
tical model to be presented it is necessary that no constraints be imposed
on the range of values that may be assumed by either directional angle.

The wind velocity may be expressed in general as
= + 2.1
we=wou wy ny +w,u s ( )
where Yo Ey, and u, are unit vectors in the positive x, y, and z directions.
An inspection of Figure 2.1 shows that at any position (x,y,2z) the components

of the vector wind velocity are given by the relationships

w_=w cos ¥ cos 8; v o= sin ¥; w =wcos ¥sin8 . (2.2)

.




In order to further define the mathematical model for wind velocity
considered as a vector-valued random process in time, assumptions are made
concerning various statistical properties of its magnitude and direction

characteristics, as noted in the next five sections.

2-2. Assumption l—Magnitude and Direction

First Variation: The initial simplifying assumption to be made is

that the magnitude of the vector wind velocity is statistically independent
of its direction, and furthermore that the directional angle 6 is statis-
tically independent of the directional angle ¥. (Stated in another way, it
is assumed that how hard the wind is blowing is not affected by the direction
in which it is blowing.) It is assumed, in fine, that the three variables

w, 0, and ¥ may be characterized as statistically independent, Gaussian ran-
dom processes.

Second Variation: For this variation, it is assumed that the three

rectangular components Wx’ wy, and v, of the vector wind velocity may be
characterized as statistically independent, Gaussian random processes.

Time limitations have not permitted an investigation of possible re-
lationships and differences between the above two variations of Assumption 1.
The second variation provides a less complex mechanization system when used

with the synthesis procedure presented in this technical note.

2-3. Assumption 2--Variance

According to Assumption 1, the scalar wind-velocity magnitude w is
characterized as a Gaussian random process w(x,y,z,t) depending on position
and time. Let a random varilable Wy be defined by specification of w for a

single position (xl,yl,zl) and time t, as
Wl = W(Xl,yl,zl’tl) . (2'3)

The variance of Wy is defined as

c'we . [('wl - E [wl])2] , (2.1)

1



where E is the expected value operator.

It is assumed that the variance of the wind velocity is a function

2
o (yl) only of the altitude q and does not vary with x

, and t
1 1

s Z .
Stated in another way, it i1s assumed that the magiitude of thi ran-
dom variations of the wind velocity does not change with time or with alter-
ations of position in a fixed horizontal plane.
An identical assumption is to be made for the five other random pro-

cesses 0, Y, LD wy, and v, listed in the two variations of Assumption 1.

2-4, Assumption 3--Correlation Coefficient

According to Assumption 1, the scalar wind-velocity magnitude w is
characterized as a Gaussian random process w(x,y,z,t) depending on position
and time. Let two random variables w. and w_, be defined by specification

1 2
of w for any two positions and times as

b
1

l - w(xlﬂylﬁzlﬂtl) y
(2.5)
2 = W(X23y23229t2)

The distance s between the two point locations (Xl,yl,zl) and (X2’y2’22) will

in general be given by

-

) 2 2 u
s = [SXZ_Xl + (y2-yl) + (z2—zl 2wi . (2.6)

Similarly, the time interval T between the two instants tl and t2 may be

expressed in general as

= - 2.
ey, -t (2.7)
The correlation coefficient p of the random variables wl and w2 is
defined as
B[ (w, - Blw, D) (v, - Bl 1))
o - 1 1 02 2 (2.8)
Y Yo




Here, cw is the standard deviation of the random variable wl-i.e., the

square r%ot of the variance of w. as was defined by Equation (2.4). The

correlation coefficient is a meaiure of the correlation or linear dependence
between the random variables Wy and LCY

It 1s assumed that the correlation coefficient p as defined above
is a function p(s,t) only of the two variables s and 7. Stated in another
way, the correlation of the wind veloclities at two different positions and
times depends only on the distance between the two positions and on the
time interval between the two time instants.

An identical assumption is made for the five other random processes

8, Y, Wos Wy’ and v, listed in the two variations of Assumption 1.

2-5. Assumption L—-Mean Value

The mean value m of the random process w(x,y,z,t) characterizing

the scalar wind-velocity magnitude is defined to be

m =E [w(x,y,z,t)] . (2.9)

It is assumed that the mean value of the wind velocity is a function
mw(y) only of the altitude y and does not vary with x, z, and t. Stated in
another way, it is assumed that the average value of the wind velocity does
not change with time or with alterations of position in a fixed horizontal
plane.

An identical assumption is made for the five other random processes

8, Y, W wy, and W, listed in the two variations of Assumption 1.

2-6. Assumption 5--Factorization of Correlation Coefficient

It is assumed that the correlation coefficient p(s,T) as defined in
Assumption 3 above may be expressed as the product of a function depending

only on s multiplied by a function depending only on 7. That is,

p(s,7) = p(8) py(T) (2.10)

This assumption is made for the correlation coefficients of all six random

processes w, ¥, 9, L Wy’ and W, listed in the two variations of Assumption 1.




This fifth assumption appears to be considerably more restrictive
than the first four. It is postulated because its use permits a simplifi-
cation both in the experimental determination of the parameters of the
mathematical model of the wind velocity and in the analog computer mechani-

zation of the model.




11T, EXPERIMENTAL DETERMINATION OF THE PARAMETERS OF THE
MATHEMATTICAL MODEL FOR RANDOM WIND VELOCITY

3-1, Introduction

In Chapter II, scalar wind-velocity magnitude w has been character-
ized as a random process w(x,y,z,t) depending on both space and time coordi-
nates. As was mentioned previously, this model has been constructed using
assumptions selected to simplify the experimental determination of parameters
of the model and also to simplify the physical mechanization of the model by
use of an analog computer network. The basic assumption is that the wind
velocity is represented by a Gaussian random process. Thus, the process is
completely specified by a determination of its first and second order moments.
The experimental determination of these moments--as represented by the mean,
variance, and correlation coefficient--is discussed in this chapter.

A general investigation of the extent of validity of the mathematical
model would be of very substantial magnitude and has not been undertaken as
part of the present research. However, a calculation of parameters using
experimental data has been carried out using a small number of wind profiles.
These results are presented in Chapter V. Also, in that chapter some simula-
ted wind profiles generated by an analog computer network are shown for com-

parison with experimentally determined wind profiles.

3-2. Determination of Mean Value

According to Assumption 4 of Chapter II, the mean value mw(y) of the
scalar wind velocity is a function only of the altitude y and does not vary
with x, z, and t. The mean value at a fixed altitude may be estimated by

the use of N measured samples W, , k = 1,2,..N, of the instantaneous wind

k,
velocity taken at the specifi@d altitude. The estimate of the mean value

mw(y) may be taken to be the sample mean

l 1
M(y) = 5

W
N >>1=
=
=
w
}_.J
| -



3-3. Determination of Variance

According to Assumption 2 of Chapter II, the variance cw2(y) of the
wind velocity is a function only of the altitude y and does not vary with
X, Z, and t. The variance at a fixed agltitude may be estimated by the use
of N measured samples Wk, k =1,2,..N, of the instantaneous wind gelocity
taken at the specified altitude. The estimate of the variance a, (v) may

be taken to be the sample variance

2

Vi) =5 ) v -um| . (3.2)

‘TT[\/]z

1

Here M(y) is the sample mean defined by Equation (3.1). This is calculated
using the same N samples Wk, k =1,2,..N, that appear explicitly in Equation
(3.2).

3-4. Determination of the Correlation Function

Two random variables Wy and w2, representing instantaneous wind

velocity at two positions and times, are defined in accordance with Equa-
tions (2.5) as

=
Il

l W(Xl,yl’zl,tl)
(3.3)
W2 = W(X2}y2ﬁz2)t2)

The distance between the two positions (xl,yl,zl) and (x2,y2,22) is given by

the variable s defined in Equation (2.6), and the interval between the two

time instants tl and t2 is given by the variable T defined in Equation (2.7).
The correlation coefficient p of the random variables w. and w, is

defined by Equation (2.8). According to Assumption 3 in Chaptir 1T, ihe
correlation coefficient is a function p(s,t) dependent only on the two vari-
ables s and 7. The correlation coefficient for the two fixed positions and
times may be estimated by the use of two sets of N each experimental samples
of the instantaneous wind velocity--viz., Wk(xl,yl,zl,tl) and Wk(x2,y2322:t2)>
k = 1,2,..N. The estimate of the correlation coefficient p(s,T) may be taken
to be

-10-




N

P(s,T) = k=l (3.4)
N V(y;) V()

Here again, M(yl) and M(yz) are sample means as defined by Equation (3.1),
while V(yl) and V(y2) are the square roots of variance estimates as defined
by Equation (3.2). All of these are to be calculated using the same two
sets of N each samples that appear explicitly in Equation (3.4).

The use of Assumption 5 in Chapter ITI greatly facilitates the estima-
tion of the function p(s,r). A collection of profiles (sample functions)
showing the time variation of the wind velocity experienced by a sensor at
a fixed position in space can, by use of Equation (2.10), be used to approxi-

mate the function
p(s=0,7) = pl(s=o) 92(7) . (3.5)

Here, in the calculations determining 7 = ‘t2 - tll, the time tl may be

fixed at any convenient value and t. may be allowed to vary. Without loss

2
of generality pl(s=o) may be assumed to equal unity. When calculations are
made in the manner just described by using samples taken through use of a
stationary sensor, the estimate of the function p2(T) may be expressed by

the estimator defined in Equation (3.4):

pZ(T) = p(S=OaT)
(3.6)
~ P(s=0,T)

Next, a collection of profiles (sample functions) showing the time
variation of the wind velocity experienced by a sensor moving along any
specified path may be used in making an estimate of the function p(s,T) for
the related values of s and T that characterize the constrained path. For
example, the wind sample profiles may be determined by observations on a
vertically ascending balloon. Here, the coordinates x and z remain fixed,

and the variable s is calculated as the difference of two altitudes yl and

-11-



y2. It is necessary to make observations for N independent balloon ascents
to accumulate the required number of samples, and it is assumed that the
rate at which the balloon rises is the same for each different ascent.

Once the function p(s,T) is determined for any arbitrary sensor path,

the function pl(s) is easily determined by use of Equations (2.10) and (3.6):

p,(5) = p(s,m) /b, ()

(3.7)

Il

p(S,T)/p(S=O,T) .

The determination of the function pl(s) as expressed in Equation (3.7)
and the determination of the function pz(T) as expressed in Equation(3.6)
permit the calculation of the function p(s,T) defining the correlation coeffi-

cient by use of Equation (2.10):

p(s,7) = p(s) py(T) . (3.8)

The assumption that the wind velocity does not vary with time at any
fixed position may be incorporated into the mathematical model by assuming
the function pg(T) in Equation (2.10) to equal the constant unity. In this -
case, it is not necessary to perform the set of measurements that have been
described for the stationary sensor. Here, samples taken in the manner de-
scribed by use of an ascending balloon are adequate to provide estimates for
the mean value, the variance, and the correlation function. For this assump-
tion, the random process characterizing wind velocity depends upon position
parameters alone.

In this chapter, the formulas related to the determination of para-
meters for the wind velocity model have been expressed in terms of the
magnitude w of'the vector wind velocity. The formulas are equally applicable
to the determination of the parameters characterizing the five other random

processes 9, Y, Vo wy, and L introduced in the mathematical model.

=12~




IV, MECHANIZATION OF THE MATHEMATICAL MODEL

h.1. 1Introduction

In Chapter IT the wind velocity of any position in space and at any
time was characterized as a random process w(x,y,z,t). The coordinates of
a vehicle or sensing element moving along an arbitrary path through space
may be described by three time functions x(t), y(t), and z(t). 1In this case,
the wind velocity experienced by the sensing element is described by the

composite, time-parameter random process

£(6) = u(x(t),y(6),2(6) 6) (+.1)

In this chapter the covariance-expansion method of synthesis that was
presented in Project A-588 Technical Notes Nos. 3 and 11 is applied to the
approximation of the random process f(t). This method has been discussed in
detail in these previous technical notes; hence, no details of proof of
validity for the procedure are presented here. Only those steps that are
necessary for implementation of the method are included.

The analog computer network synthesized by the procedure discussed
in this chapter has as outputs three variables that approximate the components
of the vector wind velocity at any specified time and position in space.
These outputs may be used to simulate the effect of wind turbulence on a
rocket or other aerospace vehicle in flight. The analog computer network
has as inputs a Gaussian white-noise waveform, a function of time represent-
ing the instantaneous altitude of the moving vehicle, and a function of time
representing the scalar velocity of the vehicle.

It should be noted that the mechanization that 1s presented here
allows for a three-dimensional movement of the vehicle, or sensing element,
with an analog computer network that is identical to the one that is required
for a vertical, one-dimensional motion of the sensing element. This simpli-
fied mechanization is accomplished by use of certain approximations for the
distance s (see Equations (4.5) and (L4.6)).

The synthesis method is presented in this chapter in terms of simu-
lation of the wind-velocity magnitude w. However, the synthesis method is

equally applicable to the simulation of the five other random processes 8, Y,

-13-



W Wy’ and v, listed under Assumption 1 for the mathematical model in
Section 2-2 of Chapter II.

4-2, The Covariance-Expansion Synthesis Method

The mean value of the wind velocity, as expressed by Equation (2.9),
is assumed to be a function mw(y) of altitude y only. This is a determinate
function--not a random process. Accordingly, the mean value may be generated
by a function generator having as input the variable y. This belng accom-
plished, without loss of generality the covariance-expansion method is
applied to the generation of a random process f(t) having a mean value equal
to zero. The total wind velocity is obtained by adding the random process
f(t) to the determinate function mw(y).

The covariance function r(t’,t) of the random process f(t) is defined

as

r(t',t) = E [f(tl) f(tg)] (k.2)

where:
tl
t

larger of (t, and t2)

1
smaller of (tl and t2).

Implementation of the covariance-expansion method requires that the covari-

ance function be expressed as a finite expansion in the form
n
r(6,8) = ) 8 () v, (8) . (4.3)
i=1

The covariance function for the random wind velocity w, with mean

value assumed equal to zero, may be found by rewriting Equation (2.8):
= o] ) Ll» .
Blv, w,) = p(s,7) o (v)) o () . (4.4)

As before, w, = w(xl,yl,zl,tl) and W, = w(x2,y2,z2,

velocity at any two positions and times. An inspection of Equation (k4.4)

t2) represent the wind

shows that this covariance function depends only on altitude, on the dis-

tance s between the two space positions (Xl’yl’zl) and (Xgﬂyg’zg)’ and on

-1h-




the time interval T = lt2 - tll =t’ - t. The covariance function, expressed
in Equation (4.2), of the random process f(t) is found from Equation (L.L) by
allowing the position coordinates (x,y,z) to become functions of time (x(t),
y(t), z(t)) describing the varying position of the sensing element.

In order that the covariance function of f(t) may be expressed in the
required form of Equation (4.3) it is expedient to approximate the distance
s between any two positions of the moving sensing element in terms of the
scalar velocity v(t) of the element. This provides the incidental benefit
of allowing a mechanization designed for one-dimensional motion of the sens-
ing element to be used without modification for three-dimensional motion.

Two methods of approximation of the distance s will be presented.

First s may be approximated by the expression

t' t
s k:[ v(\) an - I v(A) ax . (k.5)
o o

Here, v(t) is the scalar velocity of the sensing element. It is noted that
the first term of the expression is a function of t/ only, and the second
term is a function of t only.

The right-hand side of (L4.5) exactly represents total distance travel-
ed along the path of motion of the sensing element during the time interval
T = t’-t, This is obviously a good approximation for the distance between
the positions at times t’ and t provided motion is galmost along a straight
line.

The correlation coefficient p(s,T) tends to zero as distance s and
time interval T increase, For validity, the approximation of (4.5) requires
that the movement of the sensing element be approximately along a straight
line either for all distances s that are small enough that p(s,T) is appre-
clably different from zero or for all time intervals T small enough that
p(s,7) is appreciably different from zero. For larger values of s or T an
accurate calculation of s 1s not needed because all calculations of the
correlation coefficient provide a value very nearly equal to zero.

A second possible approximation for the distance s is obtained by
slightly modifying the relationship that expresses distance as the product
of velocity multiplied by time. Thus,

-15-



s~t' vt -t v(t) . (4.6)

It is noted that one of the two product terms in (L4.6) involves only t’, and
the other term involves only t.

The approximation of (L.6) is more restrictive than that of (4.5),
but in some cases is expected to lead to a less complex mechanization. TFor
validity, the approximation of (L.6) requires that the movement of the sens-
ing element be approximately at constant velocity and along a straight line
either for all distances s that are small enough that p(s,T) is appreciably
different from zero or for all time intervals T small enough that p(s,T) is
appreciably different from zero.

It will be assumed that the covariance function for the composite
random process f(t), as found by use of (L.4), can be expressed in the form
shown in Equation (4.3) when one of the two approximations discussed above
is utilized for the distance variable s, Representation in this form, either
exactly or as an approximation, is necessary for the implementation of the
covariance-expansion synthesis method.

It is to be emphasized that the functions ¢i(t) and Yi(t) in Equation
(4.3) depend explicitly on the altitude y(t) and on the scalar velocity v(t)
of the sensing element because of the use of (4.4) and either (4.5) or (L4.6)
in the evaluation of r(t’,t).

An analog computer network is to be synthesized having three inputs:
a Gaussian white-noise waveform, a function of time y(t) representing alti-
tude, and a function of time v(t) representing the instantaneous scalar
velocity of the sensing element. The output of the network is to be the
composite random process f(t) representing the wind velocity observed by the
moving sensing element,

The analog computer network to be synthesized is characterized by the

nth-order differential equation

f(n) + pn_l(t) f(n-l) + . .+ pl(t) f(l) + po(t) f
(4.7)

(v-1) , |

=q, ,(t) ¢ .+ q, (%) gl + q,(t) &

(k)

Here, f denotes the kth derivative of the function f with respect to

~16-




time. The function g represents the Gaussian white-nolse input to the
analog computer network.

In order to avoid differentiation of the noise input g(t), the nth-
order differential Equation (L4.7) may be converted into a set of n first-
order differential equations. To make this conversion the following defi-

nitions are used:

£(t) = fl(t) (4.8)
f (1) =f,  -a _(t)f. +b_ _(t)¢g
1 2 n-1 1 n-1
f2(l) = f3 - an_z(t) fl + bn_2(t) g
fnfi) =f - al(t) £+ bl(t) g
s o La () v (t)e

This set can be written more concisely in matrix notation as

(D) _a(e) B+ B) (%.9)
L] = [fl] =HF
where

—7;_—7" b (t) ]

f2 bn-2(t)
F = ' B(t) =

£ | o, (¢)
f b (t)

R | °
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- an_l(t) 1 0 0 0 0
- an_g(t) 0 1 0 0 0
A(t) =
- a. (t) 0O 0 0 0 1
1
- ao(t) O 0 0 - + 0 0

The elements a, and bk in (4.8) are related to the coefficients

Py and a4y in (Lk.7) as follows:
n-1-k
_ N (n-1-3)! (n-1-j-k)
Py =/ X (n-I1-5-K)7 *n-1-j (k.10)
J=0
n-1-k
- (n-1-3)! (n-1-j-k) .
9 = El k! (n-1-J-K)! n-1-j (k.11)
J=0

If the p, and q are known, then (4.10) and (4.11) can be solved sequentially

for the ak and bk'

A determinant L may be defined as

£(t) ¢, (t) o e (%)
Dy w @y - e Wy

L = ) (4.12)
ey e - 6 M

If this determinant is equated to zero it can be shown that the coefficient
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of f(k)(t) in the resulting expression is equal to the corresponding coeffi-
cient pk(t) in Equation (4.7). The elements ak(t) that appear in the equa-
tions of (4.8) and the matrix A(t) of (4.9) can be obtained directly by
using (4.10). It is noted that the elements ak(t) depend explicitly on the
altitude y(t) and the velocity v(t) of the sensing element because of the
dependence of ¢i(t) on these functions.

To complete the synthesis procedure, the elements bk(t) of (4.8) and
(4.9) must be determined.

The ¢i(t) of the covariance function of (4.3) may be used in the con-

struction of a fundamental matrix &(t):

e

. —
¢lli ; b (t) 0 9y (Y)
t
%12 B(t) B (8)
3(t) = ’ (4.13)
8,.(8) o (8) - o g ()

where

(4.1k)
¢, =¢.(t) (k=12 ..n}

Here, the ¢k(t) of Equation (4.3) are assumed to be linearly independent.
However, if one of the ¢i(t) is not linearly independent, it may be ex-
pressed as a combination of the remainder and the index n can be reduced by
one.

It must again be emphasized that the ¢k(t) depend on the functions
v(t) and y(t). Thus, the chain rule must be used when performing the
differentiation required in (L.1k). Both ¢, and its derivative depend ex-
plicitly on the functions v(t) and y(t).

The elements of the fundamental matrix &(t) can be determined by
application of (4.1L) once the ak(t) have been found by the procedure that

has just been explained,
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A matrix R(t’',t) may now be defined as

R(t/,t) = 8(t’) D(t) 8 (t) (4.15)

Here, the elements dij(t) of the matrix D(t) are defined in terms of the
¢i(t) and yi(t) of (4.3) as

) v, (t) .
d. . = — or i = j
iJ ¢i(t5 !
(4.16)
=0 for i #
Also, @T denotes the transpose of the matrix $.
*
A matrix R (t',t) is now defined as
*
R (t',6) =R (t,6)
(4.17)
= 8(t) D(t") &' (t")
Let A(t’,t) denote the difference
*
At/ ,8) = R(E/,8) - R (t/,8) . (k.18)
Finally, let éii(t) be the diagonal elements of the matrix
) ’
Alt,t) . (L4.19)
at’
t! =t
It can be shown that
= - i = Z -2
b (1) 6..(8) , i=12,..n . (4.20)

The matrix B(t) is now specified, thus completing the synthesis
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procedure.

4.3, The Mechanization System

The mechanization system for generating a nonstationary random pro-
cess that approximates wind turbulence is obtained by constructing an analog
computer network that realizes the differential equations of (4.8) or (L4.9).
A Dblock diagram of the mechanization system is shown in Figure L1, It is
noted that differentiation of the input white-ncise waveform is not required
in this system.

It is important to achieve the proper integrator initial conditions
at the beginning of a computation cycle (t=0) if the output of the mechani-
zation system is to realize the correct covariance function, Different
initial conditions applied to the same mechanization system with the same
position-function input may give rise to widely divergent covariance func-
tions. The initial conditions may be altered by manipulation of the white-
noise input and the position-function inputs during resetting of the analog
computer just prior to t = 0. In general, it is required that the steady-
state operation obtained during the reset cycle correspond to the desired
initial values of the position-function inputs at the beginning of the com-
putation interval.

The mechanization system shown in Figure 4.1 generates a single
component of the vector wind velocity. Two additional networks of the same
type are required if all three components are to be generated. 1In case the
second variation of Assumption 1 of the mathematical model is used, each of
the three velocity components W Wy’ and v, is generated by a separate
white-noise generator associated with an analog computer network of the type
shown in Figure 4.1.

In case the first variation of Assumption 1 of the mathematical model
is used, each of the three variables w, 6, and Y is generated by a separate
white-noise generator associated with an analog computer network of the type
shown in Figure 4.1. In turn, the three velocity components W Voo and v,
are obtained from the three variables w, 8, and ¥ by a mechanization of the

relationships given as Equation (2.2).
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V. MECHANIZATION OF A SIMPLE MODEL

5-1. Introduction

The covariance-expansion synthesis method is applied in this chapter
to the mechanization of a simple mathematical model intended to simulate the
behavior of random wind. Wind velocity profiles generated by an analog com-
puter network used to implement the mechanization are presented for compari-
son with experimentally determined wind profiles.

In the example of this chapter a single component L of wind velocity
is generated. The output f(t) of the analog computer network approximates
the component L of random wind velocity that is experienced by a moving
vehicle or sensing element. The sensing element may follow an arbitrary path
in three-dimensional space. The three required inputs to the simulation net-
work are a Gaussian white-noise waveform, a function y(t) representing the
instantaneous altitude of the sensing element, and a function v(t) represent-

ing the scalar velocity of the sensing element.

5-2. Application of the Synthesis Procedure

It will be assumed that the standard deviation of the wind velocity

w 1s a constant not varying with time or position:

o(y)=0c . (5.1)

w

It will be assumed that the correlation coefficient of the wind velocity is

given by the expression

o (s,1) = e &P (5.2)

The correlation function of w as expressed by (L.4) becomes

Elw w2] =

1
pel

1
(5.3)

By using the approximation for distance s given in (4.5), the defini-
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tion of T from (2.7) and (4.2), and the covariance function of (5.3), the

covariance function of f(t) as expressed by (4.2) or (L4.4t) becomes
7
I‘(t ,t) = E[Wl W2] (5.u)

t’ t
o exp [-Bt' - o I v(\) dk] exp [Bt + o I v(\) dk] .

This expression is seen to be in the required form of (4.3) with n = 1. The
coefficients ¢l(t') and yl(t) of (L4.3) are:

/

t

¢1(t’) = 0 exp [-Bt' - o I v(\) dk] . (5.5)
. )

yl(t) = O exp [Bt -« I v(A) dk] . (5.6)

The pk coefficients of (h.?) are determined by use of the determinant
L defined in (4.12):

(t) (%) .
ORI '

Expanding this determinant by the use of (5.5) and equating the determinant

to zero, there results:

1) (e +a V(t)) £=0. (5.8)
A comparison of (5.8) with (L.7) shows that
p (£) =8 +av(t) . (5.9)
Use of (L4.10) provides the single coefficient of the A(t) matrix of (4.9):

a (t) =p_(t) =B «av(t) . (5.10)
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The single coefficient of the &(t) matrix of (L4.13) is found by use of
(4.14) and (5.5):

¢ll(t) = ¢l(t) (
£ 5.11)
O exp [-Bt -« I v(\) dk] .

e}

The single coefficient of the D(t) matrix of (4.15) is found by the use of
(4,16), (5.5), and (5.6):

v, ()
EPA - N 6]

£ (5.12)

exp [2 Bt + 2 «o I v(A) dX] .

(e}

The single element matrix R(t’,t) of (L4.15) is found by use of (5.11) and

(5.12):
R(t’,t) = &(t") D(t) QT(t)
" " (5.13)
= 02 exp [-Bt' - o I v(\) dk] exp [Bt + o J v(A) dk] .
o] e}
The matrix R*(t,’t) of (4.17) is
R (t',t) = R (t,8')
' (5.14)

' t
02 exp [Bt/ + o f v(\) dx] exp [-Bt - o I v(\) dk] .
(o]

(e}

Il

The difference matrix of (U4.18) is found by use of (5.13) and (5.1k4).
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A(t',t) = R(t',t) - R*(t',t)
£/ t
-5 exp [_Bt' Sy f v(\) dk] exp [Bt + o f v(\) dk] (5.15)
O O
t’ t
- 6% e [Bt' + o I v(A) dx] exp [_Bt - f v(\) dx] .

o e}

The matrix of (4.19) is found by use of (5.15):

a_?; At ,t) - [5ll(t)]
t’ =t

- [_2 o (a ;o v(t))]

Finally, the single coefficient in the B(t) matrix of (4.9) is found by use
of (4.20) and (5.16).

(5.16)

b (t) = [ - Gll(t)

c\/2(e + o v(t)) .

Specification of this coefficient completes the synthesis procedure.

(5.17)

The differential equation characterizing the mechanization system for the
realization of the random wind velocity f(t) is obtained by substituting

the coefficients of (5.10) and (5.17) in the equation of (5.8):

Lo(6) = - a(t) () + b_(t) &(t)

(5.18)

T

- [B + o v(t)] f(t) +o g(t)ﬁ/ 2[B + o v(t)]
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The solution of this differential equation realizes the composite random
process f(t). As was explained in Section L-2, the output of a function
generator may be added to this solution to produce a random process having
nonzero mean value mw(y). The block diagram of an analog computer network
whose output approximates the composite random process f(t) is shown in

Figure 5.1.

5-3. Comparison with Experimental Wind Profiles

Experimental wind data taken by radar observation of an ascending
Jimsphere balloon* was used to determine parameters for the mechanization
presented in Section 5-2. Thirty experimental wind profiles were used to
calculate the mean value m(y) and standard deviation o(y) of the x component
w_ of the wind velocity. The estimators of Equations (3.1) and (3.2) were
used for these calculations. These experimental values are shown in Figures
5.2 and 5.3. The same profiles were used to calculate the correlation coeffi-
cient as a function of the vertical distance interval s = Yo - Yql- The
estimator of Equation (3.4) was used for this calculation. The experimental
values' are shown in Figure 5.4.

In order to fit the mathematical model of Section 5-2 to the experi-
mental data just discussed, the following parameter values were selected:

Lo

mwx(Y) = i§ Y 0<sys<13,

=3—$§-$y, y > 13 ;

(5.19)
o (y) =12.5 ;

-0.1 s
pW (S:T) =€
X

These parameter values for the mathematical model are shown as solid lines

in Figures 5.2, 5.3, and 5.4,

*
See Reference 7 in the Bibliography.
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An inspection of (5.19) shows that the parameter values of o = 0.1
and B = O have been selected for the correlation coefficient of (5.3).

An analog computer network was built to mechanize the mathematical
model for the example presented in this chapter. The parameter values given
in (5.19) were used for the mathematical model.

To provide an indication of the effectiveness of the simulation, wind
velocity profiles as a function of altitude y were generated by the computer
rietwork, To accomplish this, the sensing element was assigned a constant
vertical velocity v(t) as it moved from y = C to y = 20 kilometers. Several
typical profiles generated by the analog computer network are shown in
Figure 5.5. For comparison, Figure 5.6 presents several experimentally

measured wind velocity profiles as given in Reference 7 of the Bibliography.
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VI, CONCLUSIONS

This report presents a summary of the results obtained over the past
several years in research on the analog generation of nonstationary random
processes. The basic synthesis procedure, called the covariance-expansion
method, developed during the research was presented in Technical Note No. 3.
This basic procedure permitted the synthesis of a network to generate an
arbitrary, nonstationary, Gaussian random process. However, it requires the
specification of the statistical moments of the process as a function of
time. Thus, in applying the method of Technical Note No. 3 to the simula-
tion of wind disturbances affecting a moving vehicle, it i1s necessary to
construct a different network for each different flight path. In subsequent
research the synthesis method was adapted to permit a single network to be
used for the approximation of random disturbances affecting a vehicle follow-
ing an arbitrary path of motion. Here, time functions describing the motion
of the vehicle are used as inputs to the single network.

An outline of the covariance-expansion synthesis method is included
in this technical note. Also, a mathematical model for random wind turbu-
lence is included. This model has been constructed using assumptions select-
ed to simplify the experimental determination of parameters of the model and
also to simplify the physical mechanization of the model.

Chapter V of this technical note discusses the mechanization of a
simple mathematical model of one horizontal component of random wind velo-
city. The mechanization permits the simulation of the wind disturbance that
affects a vehicle moving on an arbitrary path in three-dimensional space.

Consistent with the restricted amount of experimental wind data that
hag been studied in the present project, the research that has been summari-
zed indicates that the covariance-expansion synthesis method can be used to
construct an analog computer network that approximates the salient statisti-

cal characteristics of wind turbulence.
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